
 

 

  
Abstract—The paper is focused on sandwich optimization 

subjected to the maximum displacement criterion. The optimization 
problem is based on the use of continuous design variables. 
Thicknesses of layers with the known layer orientation are used as 
design variables. The optimization problems with displacement 
constraints are formulated to minimize the sandwich weight. The 
designs of the final thickness of sandwich plate have to be rounded 
off to integer multiples of the commercially available layer thickness. 

 
Keywords—Design optimization, displacement criterion, 

sandwich structure, thickness design variable, weight objective 
function.  

I. INTRODUCTION 
he typical sandwich structure consists of three layers.  
The outer layers are made of high strength material such 

as steel, fiber reinforced laminates etc., which can transfer 
axial forces and bending moments, while the core is made of 
lightweight materials such as foam, alder wood etc. The 
material used in sandwich core must be resistant to 
compression and capable of transmitting shear [1].   

The design optimization problem of current interest is the 
minimization of the weight function for a sandwich composite 
plate. This is a design optimization problem which optimizes 
the thickness of the composite laminae and core to give the 
minimum weight. A greater interest to current study is given to 
the works on the design optimization of composite plates 
where the thicknesses are taken as the design variables.  

A symmetric sandwich plate to the mid-plane has the 
objective function of minimizing the weight function. As 
design variables are used thicknesses of layers and are 
computed using the Sequential Linear Programming method. 
Within this method the Modified Feasible Direction method 
was used.  

The optimization of a composite plate is important analysis 
for design of structures ranging from aircrafts to civil 
engineering structures [2-4]. 
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II. EFFECTIVE MODULI OF COMPOSITES 
If the composite has periodic microstructure, then Fourier 

series can be used to estimate all the components of the 
stiffness tensor of a composite. Explicit formulas for a 
composite reinforced by long circular cylindrical fibres, which 
are periodically arranged in a square array (Fig. 1) are written 
in the following way. 
Because the microstructure has square symmetry, the stiffness 
tensor has six unique coefficients given by [5] 
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Fig. 1 periodic square microstructure model 
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( )( )mg ν22 −=                                                                   (11) 

Assuming the fibre and matrix are both isotropic, Lame 
constants of both materials are obtained by 

( )( )νν
λ

211 −+
=

E             G=µ .                                  (12) 

For a composite reinforced by long circular cylindrical fibres, 
periodically arranged in a square array  (Fig. 1) the constants 
Si, i = 3, 6, 7 are given as follows [5] 

2
3 02748,047603,049247,0 ξξ −−=S   

2
6 27152,014944,036844,0 ξξ −−=S  

2
7 23517,032035,012346,0 ξξ +−=S .                              (13) 

Further alternative is the periodic microstructure with square 
arrangement of fibers in the representative volume element 
(RVE) solved using FEM (Fig. 2). 

   
Fig. 2 periodic square microstructure FEA model 

 
The components of the tensor C are determined solving three 
elastic models of RVE with parameters (a1, a2, a3) subjected to 
the periodic boundary conditions. By using a unit value of 
applied strain, it is possible to compute the stress field, whose 
average gives the required components of the elastic matrix as 

dV
V

C
V

iiij ∫== σσ 1 .                                                        (14) 

The coefficients in C are found by setting a different problem 
for each column of C . The elastic properties of the 
homogenized material can be computed by [5] 
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2
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III. SANDWICH PLATES WITH LAMINATE FACES 
A sandwich can be defined as a special laminate with three 
layers. The thin cover sheets, i.e. the layers 1 and 3, have the 
thicknesses h1 for the lower skin and h3 for the upper skin (Fig. 
3). The thickness of the core is h2. In a general case h1 does 
not have to be equal to h3, but in the most important practical 
case of symmetric sandwiches h1 = h3. 
To formulate the governing differential equations for sandwich 
plates we draw the conclusion from the similarity of the elastic 
behaviour between laminates and sandwiches in the first order 
shear deformation theory and all results derived for laminates 
can be applied to sandwich plates. We restrict our 
considerations to symmetric sandwich plates with thin cover 
sheets.  
The assumptions about deformation are: 

a) For the sandwich thin cover sheets gilt Kirchhoff´s 
assumptions about deformation. In-plane stress-strain state is 
accrued in the sandwich thin cover sheets.  

b) The sandwich core with the thickness h2 transfers only shear 
stresses perpendicular to the mid-plane of the cover sheets. 
The material characteristics is the shear modulus G2. 

c) All points in the normal line have the equal deflections 
w1 = w2 = w3 = w. 

d) All layers are perfectly bonded. 
We can write the shear deformations  
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where d is the distance of sheets mid-planes.  
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Fig. 3 geometry of deformation 
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Fig. 4 internal forces at the sandwich element in the (x, z) plane 

 
Most sandwich structures can be modelled and analyzed 

using the shear deformation theory for laminate plates [6]. The 
components of vector of internal forces N, M, V  at the 
sandwich element in the (x, z) plane are shown in the Figure 4. 

The in-plane resultants N for sandwiches are defined by 
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The moment resultants are defined by 
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and the transverse shear force by 
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For the resultants N and M the integration is carried out over 
the sheets only and for the transverse shear force over the core.  

The constitutive equations for a sandwich are written in the 
hypermatrix form 

,
s

    
    =     

        

0
mN A B 0ε

M C D 0κ
V 0 0 Aγ

                                                  (24) 

with stiffness coefficients 
,)3()1(

ijijij AAA +=       ( ))1()3()2(

2
1

ijijij AAhB −= , 

)3()1(
ijijij CCC += ,       ( ))1()3()2(

2
1

ijijij CChD −= , 

;)2(hEA s
ij

s
ij =  i,j = 4, 5,                                                          (25) 

where s
ijE  are the transverse shear moduli of the core. 

From equilibrium equations results the set of five 
differential equations correspond with five partial differential 
equilibrium equations. For the symmetric sandwich plate 
element with laminated faces gilt 
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The solving of unknown functions u1(x,y), u3(x,y), v1(x,y), 
v3(x,y), w(x,y) have to perform the boundary conditions for 
each boundary. Consistent with the eight order set of 
differential equations four boundary conditions must be 
prescribed for each edge of the plate. The classical boundary 
conditions  
 Nn or u, Nnt or v, Mn or nw ∂∂ ,  

 
t

MQV nt
nn ∂

∂
+=   or  w                                                         (31) 

must be specified. The subscripts n and t in the boundary 
conditions above denote the coordinates normal and tangential 
to the boundary. It is well known that in the classical plate 
theory the boundary cannot responded separately to the shear 
force resultant Qn and the twisting moment Mnt but only to the 
effective or Kirchhoff shear force resultant. Equations (31) 
may be used to represent any form of simple edge conditions, 
e.g. clamped, simply supported and free.  

If the sandwich layers are symmetrical to the mid-plane, for 
the simplified form of equations (31), the boundary conditions 
are 

Simply supported edge: 0,0 == nMw , 
Clamped edge: 0,0 =∂∂= nww ,                                     
Free edge: 0,0 == nn VM . 
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We have used the finite element method for solving the 
problem. The continuum was divided to the finite number of 
rectangular finite plate elements.  

IV. DESIGN OPTIMIZATION 
Before starting the topic of design optimization, it is 

important to distinguish between analysis and design. Analysis 
is the process of determining the response of a specified 
system to its environment. Design is the actual process of 
defining the system. Analysis is therefore a subset of design.  

Engineering design is an iterative process. The design is 
continuously modified until it meets evaluation and acceptance 
criteria set by the engineer. Mathematical and empirical 
formulas and experience have been useful in the traditional 
design processes to verify the adequacy of designs. A fully 
automated design optimization is used when engineers are 
trying to modify a design which level of complexity exceeds 
their ability to make appropriate changes. It is not surprising 
that even what might appear as extremely simple design task 
may easily be a real challenge to the designer during the 
decision-making process.  

Design optimization refers to the automated redesign 
process that attempts to minimize an objective function subject 
to limits or constraints on the response by using a rational 
mathematical approach to yield improved designs.  

A feasible design is a design that satisfies all of the 
constraints. A feasible design may not be optimal. An optimum 
design is defined as a point in the design space for which the 
objective function is minimized or maximized and the design 
is feasible.  
The optimization process is applied to the approximate 
problem represented by the polynomial approximation. The 
coefficients of the polynomial function are determined by 
the least squares regression.  
For regression analysis the singular value decomposition is 
used. When the objective function and constraints are 
approximated and their gradients with respect to the design 
variables are calculated based on chosen approximation, it is 
possible to solve the approximate optimization problem.  
One of the algorithms used in the optimization module is 
called the Modified Feasible Direction method (MFD). The 
solving process is iterated until convergence is achieved. 
It is important to distinguish the iteration inside the 
approximate optimization from the loop in the overall 
optimization process. Figure 5 shows the iterative process 
within the optimization loop. 
Using the modified feasible direction method (MFD) [7, 8] the 
solving process is iterated until convergence is achieved: 

1. q = 0, mq XX = .  
2. q = q+1. 
3. Evaluate objective function and constraints. 
4. Identify critical and potentially critical constraints 

cN . 
5. Calculate gradient of objective function ( )iXF∇  and 

constraints ( )ik Xg∇ , where 
cNk ,...,2,1=  . 

6. Find a usable-feasible sear ch direction qS . 

7. Perform a one-dimensional search qqq SXX α+= −1 .          
8. Check convergence. If satisfied, make qm XX =+1 . 

Otherwise, go to 2. 
9. qm XX =+1 . 

Convergence of MFD to the optimum is checked   by criteria 
of  maximum iterations and criteria changes of objective 
function.  
Besides the previously mentioned criteria, the Kuhn-Tucker 
conditions necessary for optimality must be satisfied. 
The other algorithm for solving the nonlinear approximate 
optimization problem is called the Sequential Linear 
Programming method (SLP). The iterative process of SLP 
within each optimization loop is shown below:  
 

   

SLP and 
MFD 
Methods 

  
  

  
  

  

  
Parametric 
geometry and 
mesh 
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Initial analysis 
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Fig. 5 general optimization process 

 
1. p=0,  Xp=Xm. 
2. p=p+1. 
3. Linearize the problem at 1−pX  by creating a first order 
Taylor Series expansion of the objective function and 
retained constraints 

)XX)(X(F)X(F)X(F ppp 111 −−− −∇+=  

)XX)(X(g)X(g)X(g ppp 111 −−− −∇+= . 
4. Use this approximation of  optimization instead of the 
original nonlinear functions: 
Maximize: F(X) 
Subject to:   0)( ≤Xg and  U

ii
L
i XXX ≤≤ . 

5. Find an improved design pX (using the Modified 
Feasible Direction method). 
6. Check feasibility and convergence. If both of them are 
satisfying, go to 7. Otherwise, go to step 2. 
7. pm XX =+1 . 

Using the SLP method the solving process is iterated until 
convergence is achieved. Convergence or termination checks 
are performed at the end of each optimization loop in general 
optimization. The optimization process continues until either 
convergence or termination occurs. 

The process may be terminated before convergence in two 
cases: 
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- the number of design sets so far exceeds the maximum 
number of optimization loops, 
- if the initial design is infeasible and the allowed number of 
consecutive infeasible designs has been exceeded. 

V. MODELING OF SANDWICH PLATES AND NUMERICAL 
SOLUTION 

For the numerical solution the simply supported panel with 
laminate facings was used. Panel length is 3750 mm, nominal 
width is 1000 mm. Thickness of the facings is h1=h3 and core 
is h2 (Fig. 6). On the panel affects uniform static wind load 
with intensity of 2 kPa in the bending plane. The laminate 
Carbon/epoxy facings are composed of eight identical 
thickness layers of a symmetric laminate [0/±45/90]s.  

It was considered the carbon fibres in epoxy matrix, while 
unidirectional laminate layer has characteristics: 

Ef = 230 GPa; Em = 3 GPa; νf  = 0.2; νm = 0.3; Vf = 0.6; ρk = 
1580 kg/m3.  

Sandwich core, consisting of PUR foam, has material 
constants: EPUR = 16 MPa; νPUR = 0.3; ρPUR = 150 kg/m3.  

 
      h 3     

     h 2     
    h 1 

    
Laminate facings   

Fig. 6 scheme of sandwich structure 

VI. RESULTS  
Laminate properties were determined by homogenization 
techniques [9, 14]. Computational program MATLAB was 
used to calculate the effective material properties of laminate 
facings (Figs. 7-10). 
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Fig. 7 longitudinal modulus E1 versus fiber volume fraction 

 

 

0
2000
4000
6000
8000

10000
12000
14000
16000

0,1 0,2 0,3 0,4 0,5 0,6 0,7

Vf [%]

E2
 [M

Pa
] 

         0.1      0.2        0.3       0.4       0.5        0.6       0.7  

 
Fig. 8 transversal modulus E2 versus fiber volume fraction 
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Fig. 9 shear modulus G12 versus fiber volume fraction 
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Fig. 10 Poisson ratio ν 12 versus fiber volume fraction 

 
Numerical experiments were conducted through the 

COSMOS/M program.  
There were solved three optimization processes: 
The design optimization problem 1 can be written as follows:  
 

( ) ( )1hGF =X → min   [N] 

   01.0101 1
4 ≤≤⋅ − h    [m]    

0 ≤  w ≤ 0.0375   [m]  
 

The initial values and bounds of design variables, constraints 
and the objective function are shown in the Table 1. 

 
Table 1 summary of results of the optimization problem 1 

 
 

 
 

Fig. 11 deflections w before - a) and after - b) optimization process 1 

Optimization parameters Initial 
values  

Final values Tolerance 
τ  

Design variable h1 [m] 0.001 5.683∙10-4 

 
1∙10-5 

 
Objective 
function 

G [N] 573.75 568.893 1∙10-3 

Constraint w [m] 0.0238 0.0375 3.75∙10-4 
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b) a)  
Fig. 12 effective stresses xσ  at the bottom of first layer before - a) 

and after - b) optimization process 1 
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Fig. 13 variation of design variable h1 [m] - optimization process 1 
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Fig. 14 variation of constraint values w [m] - optimization process 1 
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Fig. 15 variation of objective function values G [N] - optimization 

process 1 
 
The design optimization problem 2 can be written as follows:  

( ) ( )2hGF =X → min   [N] 
2.0101 2

2 ≤≤⋅ − h [m] 
0 ≤  w ≤ 0.0375   [m] 

The initial values and bounds of design variables, constraints 
and the objective function are shown in the Table 2 for 
optimization problem 2.  

 

 

              Table 2  summary of results of the optimization problem 2 
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Fig. 16 variation of design variable h2 [m] during the optimization 
process 2 
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Fig. 17 variation of constraint values w [m] during the optimization 
process 2 
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Fig. 18 variation of objective function values G [N] during the 
optimization process 2 

 
The design optimization problem 3 can be written as follows:  

( ) ( )21,hhGF =X → min   [N] 
002.0105 1

4 ≤≤⋅ − h  [m] 
2.0105 2

2 ≤≤⋅ − h    [m] 
0 ≤  w ≤ 0.0375   [m] 

Optimization parameters Initial 
values  

Final values Tolerance 
τ  

Design variable h2 [m] 0.1 7.755∙10-2 1∙10-5 
Objective 
function 

G [N] 573.75 447.445 1∙10-3 

Constraint w [m] 0.02378 0.0375 3.75∙10-4 
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The initial values and bounds of design variables, 
constraints and the objective function are shown in the Table 3 
for optimization problem 3.  

 
Table 3 summary of results of the optimization problem 3 

 

 

0.002 
 
0.00185 
 
0.00171 
 
0.00156 
 
0.00142 
 
0.00128 
 
0.00113 
 
0.00099 
 
0.00085 
 
0.00070 
 
0.00056 

 1         2         3         4        5          6        7         8         9         10       11       12      13       14       15       16       17 

 
Fig. 19 variation of design variables h1 [m] during optimization 

process 3 
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Fig. 20 variation of design variables h2 [m] during optimization 

process 3 
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Fig. 21 variation of constraints values w [m]during optimization 

process 3 
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Fig. 22 variation of objective function values G [N] during 

optimization process 3 
 

 Fig. 23 Contour plot of deflections w before and after the 
optimization process 3 

 
 

a) b) 

Fig. 24 contour plot of stresses xσ  at the bottom of the first layer 
before and after the optimization process 3 

 

a)  b)   
Fig. 25 contour plot of stresses xzτ  at the bottom of core layer before 

and after the optimization process 3 

VII. DISCUSSION AND CONCLUSION 
The homogenization techniques applied for periodical RVE 

was used to get the material characteristics of outer laminate 
layers of sandwich structure (Figs. 7-10) [17, 19, 20].  
The first order shear laminate theory was used by the FEM 
analysis of the problem [10-14]. The optimization problem 

Optimization parameters Initial 
values  

Final 
values 

Tolerance 
τ  

Design variable h1 [m] 0.001 0.002 1∙10-5 
Design variable h2 [m] 0.158 0.05067 1∙10-5 

Objective 
function 

G [N] 900 341.31 1∙10-3 

Constraint w [m] 0.01092 0.0375 3.75∙10-4 
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was formulated as a minimum weight of simply supported 
rectangular sandwich plate subject to deflection constraint in 
the middle of the plate. Design variables were thicknesses h1= 
h3 and h2 of sandwich layers. The optimal problem was solved 
using SLP and MFD method [15, 18] with maximum 70 
iterations in each own optimization loop. In the Figs. 13-22 
there are depicted variations of design variables, constraint and 
objective function during the optimization process 1, 2 and 3, 
respectively. Initial and final values of optimization parameters 
for optimization process 1, 2 and 3 are shown in the Tables 1, 
2 and 3, respectively. Contour plot of deflections w, stresses  

xσ  at the bottom of the first layer before and after 
optimization process 1 are illustrated in the Figs. 11 and 12, 
respectively. Contour plot of deflections w, stresses  xσ  at the 

bottom of the first layer and stresses xzτ  at the bottom of the 
core layer before and after optimization process 3 are 
illustrated in the Figs. 23-25, respectively. General 
optimization procedure is optimization process 3 with two 
design variables, where designer can optimize whole thickness 
of sandwich panel within taking into account both constraints 
for thicknesses h1 and h2. A hygrothermal effect of 
environment was not taken into account. Only static analysis 
under mechanical loading of sandwich multilayered structure 
was performed [21].   
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